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ABSTRACT

Functional reactive programming (FRP) is a declar-
ative programming language that combines a notion
of continuous, time-varying behaviors with a notion
of discrete, event-based reactivity. In previous work
we investigated key theoretical properties of FRP but
did not formally address the issue of cost. But one of
our goals is to use FRP in real-time applications. In
these applications, it is crucial that the cost of run-
ning programs be known before hand. Ideally, this
cost should also be fixed.

To address these concerns, we present Real-Time FRP
(RT-FRP), a statically typed language where the cost
of each execution step is bounded by a constant, and
the space needed for running a program is also con-
stant. These two properties guarantee that RT-FRP
can be executed in real-time and in constant space,
making it a suitable model for programming real-time
applications and embedded systems. The syntax of
RT-FRP is developed as restricted subset of that of
FRP. The exact restrictions are described using two
novel concepts inspired by the notion of tail recur-
sion. Most but not all of our existing programs fall
in this restricted subset of FRP. We deal with the
balance through a mechanism to integrate RT-FRP
with an external language.

1. INTRODUCTION

Functional reactive programming (FRP) has proven
to be a useful programming model for a diverse set of
application domains, including graphics and anima-
tion [6, 8], robotics [16, 17], computer vision [20], and
graphical user interfaces [22, 4]. FRP can be imple-

mented effectively as an embedded DSL in Haskell.

In addition to our applications research, we have been
studying the theoretical properties of FRP from a
programming languages perspective. In previous work
we defined a denotational semantics for FRP that is
based on continuous real time [8]. We also defined an
abstract stream-based implementation that simulates
continuous time by sampling [12, 7]. In addition, we
have shown that, in the limit as the sampling inter-
val goes to zero, the stream-based implementation is
faithful to the formal denotational semantics [24].

While these are encouraging theoretical results, most
of the applications that we are interested in have
significant performance demands, including real-time
constraints. But none of our previous work addresses
these concerns. For example, real-time animations
must run fast enough to yield smooth motion, robots
must be able to plan quickly and react swiftly to envi-
ronmental events, and graphical user interfaces must
respond promptly to mouse clicks and key presses.
For the most part, we have found FRP to be “fast
enough” for many important applications. But if it is
to be used successfully in the most demanding appli-
cations, it will have to run faster and, perhaps more
importantly, it will have to satisfy certain real-time
constraints.

To address these shortcomings, we have designed a
core variant of FRP, called Real-Time FRP (RT-FRP),
whose operational semantics is such that each step
can be carried out in constant time. Furthermore,
RT-FRP has the property that term size is also bounded:
it is not possible for terms to grow arbitrarily. These
two properties guarantee that RT-FRP programs can
be executed in real time, and in constant space: there
are no space leaks (a notorious source of inefficiency

in functional programs). RT-FRP is also type-preserving:

run-time type errors for well-typed programs are not
possible.

An interesting aspect of RT-FRP is its treatment of



recursion, which is an important source of its expres-
siveness. We identify two different “styles” of recur-
sion: one for pure signals, and one for reactivity. In
order to prevent terms from growing in size, these
recursions need to be constrained. We do so for pure
signals by insisting that they be well-formed in a cer-
tain sense, and is analogous to defining recursive, but
constant-space, data structures in a functional lan-
guage. And we do so for reactivity by insisting that
the recursions be in a tail-recursive context, much like
tail recursion in Scheme [19].

Although RT-FRP is an interesting language design
in its own right, our main interest is in compiling
a higher-level version of FRP (and ultimately all of
FRP) into RT-FRP. Thus we also describe how the
most commonly used FRP constructs can be com-
piled into RT-FRP. In addition, RT-FRP can either
be interpreted or further compiled into a lower-level
object language such as C. An important application
of this idea is embedded systems, where static and
running code sizes, as well as run-time performance,
are extremely important.

2. ABRIEFINTRODUCTIONTO FRP
In this section we give a very brief introduction to
FRP; see [6, 8] for more details. FRP is an example
of an embedded domain-specific language [14, 11]. In
our case the “host language” is Haskell [13], a higher-
order, typed, polymorphic, lazy and purely functional
language, and thus all of our examples are in Haskell
syntax.

There are two key polymorphic data types in FRP:

the Behavior and the Event. A value of type Behavior a

is a value of type a that varies over continuous time.
Constant behaviors include numbers (such as

1 :: Behavior Int), colors (suchasred :: Behavior
Color), and others. The most basic time-varying be-
havior is time itself: time :: Behavior Real. More
interesting time-varying behaviors include animations
of type Behavior Picture (the key idea behind Fran
[6, 8], a language for graphics and animations), sonar
readings of type Behavior Sonar, velocity vectors of
type Behavior (Real,Real), and so on (the latter
two examples are used in Frob [16, 17], an FRP-based
language for controlling robots).

A value of type Event a is a time-ordered sequence
of event occurrences, each carrying a value of type
a. Basic events include left mouse button presses
and keyboard events, represented by the values 1bp
:: Event () and key :: Event Char, respectively.
The declarative reading of 1bp (and key) is that it
is an event sequence containing all of the left button
presses (and key presses), not just one.

Behaviors and events are both first-class values in

FRP, and there is a rich set of operators (combina-
tors) that the user can use to compose new behaviors
and events from existing ones. An FRP program is
just a set of mutually-recursive behaviors and events,
each of them built up from static (non-time-varying)
values and/or other behaviors and events.

For example, suppose we wish to generate a color
behavior which starts out as red, and changes to blue
when the left mouse button is pressed. In FRP we
would write:

> color :: Behavior Color
> color = red ‘until‘ (1bp -=> blue)

This can be read “behave as red until the left button
is pressed, then change to blue.” We can then use
color to color an animation, as follows:

> ball :: Behavior Picture

> ball = paint color circ

>

> circ :: Behavior Region

> circ = translate (cos time, sin time) (circle 1)

Here circle 1 creates a circle with radius 1, and the
translation causes it to revolve about the center of
the screen with period 27 seconds. Thus ball is a
revolving circle that changes from red to blue when
the left mouse button is pressed.

Sometimes it is desirable to choose between two dif-
ferent behaviors based on user input. For example,
this version of color:

> color2 = red ‘until®

> (lbp -=> blue) .|. (key -=> yellow)
will start off as red and change to blue if the left
mouse button is pressed, or to yellow if a key is
pressed. The .|. operator can be read as the “or”
of its event arguments.

Furthermore, it is often useful to switch between be-
haviors repetitively as successive events occur. A
variation of until called switch can be used for this
purpose. For example, the code:

> color3 = red ‘switch®

> (lbp -=> blue) .|. (rbp -=> yellow)
behaves just as color2 for the first button press, but
in addition, subsequent button presses will cause it
to flip between blue and yellow, depending on which
button was pressed.

The function when transforms a Boolean behavior
into an event that occurs exactly “when” the Boolean
behavior becomes True; this is called a predicate event.
For example:



> color4d = red ‘untilf
> (when (time >* 5) -=> blue)

defines a color that starts off as red and becomes blue
after time is greater than 5.

It is often desirable to “lift” an ordinary value or
function to an analogous behavior. The family of
functions:

> 1ift0 ::
> 1iftl ::

a —> Behavior a

and so on, perform such coercions in FRP. Haskell
overloading often permits us to use the same name
for lifted and unlifted functions, such as most of the
arithmetic operators. When this is not possible, we
use the convention of placing a “*” after the unlifted
function name. For example, >* in the color3 exam-
ple is the lifted version of >.

Finally, one of the most useful operations in FRP is
the integration of numeric behaviors over time. For
example, the physical equations that describe the po-
sition of a mass under the influence of an accelerating
force £ can be written as:

> s,v :: Behavior Real
> s = s0 + integral v
> v = v0 + integral f

where s0 and vO are the initial position and velocity,
respectively. Note the similarity of these equations
to the mathematical equations describing the same
physical system:

s(t) = so + fottv(r) dr
v(t) =wvo + [, f(r)dr

This example demonstrates well the declarative na-
ture of FRP. It is common that an FRP program is
concise enough to also serve as a specification for the
problem it solves.

There are many other useful operations in FRP, but
we introduce them only as needed in the remainder
of the paper.

3. REAL-TIME FRP

FRP is a rich language. It is higher-order, thus hav-
ing all of the power of the lambda calculus. In addi-
tion, one can define behaviors of behaviors, recursive
behaviors, function-defining behaviors, and behavior-
defining functions. Inherent in this expressiveness is
the possibility of writing programs that do not ter-
minate, that perform intractible amounts of compu-
tation for each time instant, or that have subtle and
sometimes large space leaks. Of course, this is no
different from using a functional (or other high-level)

(a => b) -> (Behavior a -> Behavior b)

language in programming any application. However,
the beauty of FRP is that it deals explicitly with
time, and is thus best suited for applications that
care about time. Unfortunately, such applications
also often care that too much time may be taken to
achieve some goal: good performance and real-time
guarantees are often paramount.

For this reason we have designed a small language
that we call Real-Time FRP, or RT-FRP, that is
provably efficient in both time and space. Although
expressiveness is naturally sacrificed in such an en-
deavor, RT-FRP sill captures the intrinsic nature of
FRP, and allows the expression of the most common
kinds of behaviors we have encountered in our ap-
plications work. For convenience, RT-FRP also has
a mechanism to “escape” to the level of the lambda
calculus, and our theorems are thus qualified with
respect to the lambda terms: if they are time- and
space-efficient, then the overall RT-FRP terms are
also guaranteed to be time- and space-efficient.

3.1 The Syntax of RT-FRP

In what follows, = and ¢ are the syntactic categories
for variables and real numbers, respectively. To avoid
confusion between FRP and RT-FRP terms, we used
typewriter font in Section 2 for FRP code, and we
will use a mathematical font for RT-FRP.

In FRP we distinguish between behaviors and events.
In reality, the following isomorphism holds:

> Event a = Behavior (Maybe a)

where Maybe is Haskell’s option data type, with values
Nothing and Just x. Thus it is convenient in RT-
FRP to combine behaviors and events into a common
type that we call a signal. The Maybe type is replaced
by an explicit lifting, where L replaces Nothing, and
r, replaces Just x.

The full syntax of RT-FRP is given first by a set of
functional terms:

e = z|c|()]|(e1,e2)]erL|L]|Ax.e|er ea]
fix z.e

Except for the lifting explained above, this is the con-
ventional lambda calculus with real numbers, pairs,
and a unit value. For clarity, we occasionally take
the liberty of using some common syntax not pro-
vided here, such as “where” clauses and “if ...then
...else” in functional terms.

A functional term may evaluate to a value, defined
by:

v o= c|()|(v1,v2) v | L] Azee
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Figure 2: Typing Rules for Signals

Finally, the syntax for signals is given by:

s,ev = input|time|ext e|delay v 5|
let signal x = s1 in s2 |
s1 switch on & = ev in s2

Here input is the generic signal for system input; time
gives the current time; ext (external call) invokes the
A-calculus to evaluate a functional term; delay delays
a signal by one tick; let signal binds the current value
of a signal to a variable, which in turn can be used
in an ext term; s; switch on £ = ev in s is a signal
that starts off as s1, and switches to s2 whenever the
event ev occurs.

For simplicity, note that we only allow one branch in
the switch construct. However, it is easy to extend
the syntax' to s switch on {z; = ev; in s; }JEU-n},
where n events are simultaneously tested, and the
one that occurs first triggers the switching. It is also
straightforward to extend the typing rules and oper-
ational semantics to handle this more general case.

Although RT-FRP’s switching construct is less ex-
pressive than the corresponding construct in FRP,
RT-FRP still has the general flavor of FRP. We will
show in a later section how many FRP primitives
can be defined in terms of RT-FRP; for example,

'We use set comprehension notation {f;}7€{!"} as
shorthand for {f1, f2, -+, fn}, where f; is some for-
mula parameterized over j. We omit the superscript
“j € {1..n}” when it is obvious from the context.

integral can be defined in terms of delay.

3.2 Static Semantics
The types used to describe RT-FRP terms have the
following form:

g == input|real|unit|gxg|lgL]lg—g

A wariable context T' gives types to variables. T' can
be viewed as a set, so the order of bindings does not
make a difference. For simplicity, we require all vari-
able names in a program to be distinct. A contest
consists of a variable context I' and a continuation
contert A. For now we do not actually make use of
A, whose purpose will become clear when we extend
our language to allow tail-recursive signals in section
4.2.

Variable contexts T' a= [T z:g
Contexts ;A

We define two typing judgements: I' -y e : g, which
can be read “e is a functional term of type g;” and
Iy A Fs s : g, which can be read “s is a signal
that carries values of type ¢g” (in Haskell/FRP, these
would be written e :: g and s :: Behavior g,
respectively). The typing rules for functional terms
are essentially those of the simply-typed A-calculus,
and are shown in figure 1. The typing rules for signals
are shown in figure 2, and are relatively straightfor-
ward.



3.3 Operational Semantics
In this section we give a structured operational se-
mantics for RT-FRP [18]. Execution of an RT-FRP
program is carried out in a variable environment £
and a continuation environment K.

Variable environments E == [lI€,z—v

Continuation environments K == []|K, k— (z,s)

For now we can ignore the continuation environments,
which are not needed until in section 4.2.

An RT-FRP program is executed in discrete steps,
driven by a stream of time-stamped input events.
Given the current time ¢ and input 4, a term s evalu-
ates to a value v, and transitions to another term s'.

tyi ;
We write this as & + s‘—;vandf,';lC Fos 2

s'. For brevity, we sometimes combine these two

t,i
rules into the more compact notation £; K F s —»
s',v. The resulting structural operational semantics
for RT-FRP is shown in figures 3 and 4.

Most of these rules are straightforward. For example:

1. The instantaneous value of delay v s is just v.
But it transitions to a new term delay v’ s,
where v’ is the previous instantaneous value of
s, and s’ is the new term resulting from execu-
tion of s.

2. Evaluation of a let signal expression is expressed
as two rules, depending on whether the bound
variable is free in the body of the expression,
but is otherwise straightforward. More interest-
ing are the transition rules: one of them takes
advantage of the fact that the bound variable
is not free in the body, and thus abandons the
binding, effectively performing a garbage col-
lection.

3. The most complex rules are those for switch.
The key point to note is that, in the case that
there is no event, the transition rules do not
“age” the signal that is to be ultimately switched
to. In other words, that signal begins execution
at the moment just after the event occurs.

4. RECURSION

As it stands now, our language has a severe limita-
tion: although one can use fix to introduce recur-
sion in A-terms, there is no way to define recursive
signals, because the typing rules prohibit recursive
bindings. This limitation prohibits writing many in-
teresting programs, such as having a signal react to
itself. For example:

v = /adt until v >= 50 then 50

expresses the idea that a body accelerates until the
speed is 50 meter/second, and then maintains that
speed. It is also common to write recursive integra-
tions, such as:

v:/(f—kv)/mdt

which describes the velocity of a mass m under ac-
celerating force f and friction kv. These are common
idioms in FRP, and we need a way to express them
in RT-FRP.

4.1 Recursive Signals

To solve this problem, we allow let signal bindings
to be recursive. No changes in syntax are needed.
Rather, we must modify the semantics by replacing
the rules tp-signal and tr-signal with tp-signal’ and
tr-signal’, respectively, which are shown in figure 5.
In section 4.3 we define a well-formedness condition
that must be satisfied to guarantee that the resulting
recursions can still be executed in real time.

Now the two examples given above can be encoded as
follows (integral is defined below, and until and when
are defined in section 6):

let signal v = integral a until
(when ext (v > 50)) then 50
in -
and
let signal v = integral (ext (f - k*v)/m)
in -

Stateful Signals

When writing programs in RT-FRP, we often want to
define signals that carry internal state. Integration is
a good example of this, which is essentially keeping a
running sum of the instantaneous values of a signal.
Getting a handle on previous instantaneous values is
the purpose of delay, and when combined with the
ability to define recursive signals using let signal, we
have all the tools we need to define stateful signals.
The basic idea is that in:

let signal = delay v s1[z] in s2[z],

we use z as a state that initially has value v and is up-
dated by si[z]. For example, the running maximum
of a signal s can be expressed as:

let signal cur = s in
let signal rmax = delay -co (ext max{rmax, cur}) in
ext rmax

rmax is —oo at tick 0. At tick n + 1, it is updated to
be the larger one of its previous value and the value
of s at tick n. Therefore rmax records the maximum
value of s up to the previous tick.
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By the same principle, numerical integration using
the forward Euler method can be defined as follows:

integral s
= let signal t = time in
let signal v = s in
let signal st = delay (0,(0,0))
(ext ((i, (v,t)) where

(4o, (vo,t0)) = st
1 =10+ Uo(t — to))

in ext (fst st)

4.2 Tail Signals

Another very important kind of recursion arises im-
plicitly in switch expressions, which can be used to
express repeating signals. For example:

integral (ext 1) switch on x = ev in integral (ext 1)

is a signal that increases at a constant rate, and is
reset everytime event ev occurs.

In fact this simple repetition is a special case of hybrid
automata [10, 15]. A hybrid automaton is a com-
monly used formal model for a hybrid system, and
consists of a finite number of control modes. Discrete
events trigger the system to jump from one mode to
another. Within one mode, the system state changes
continuously.

A repeating signal can be viewed as a hybrid automa-
ton with only one mode, where a jump leads back
to the same mode. A more interesting example is a
thermostat, which has two modes. In the On mode,
the heater is on, and the temperature rises according
to some flow condition. When the jump condition
“temperature > Thign” is met, it switches to the Off
mode, and the temperature gradually drops. The
thermostat jumps back to the On mode again when
“temperature < Tj,,,” becomes true.

Although switch is adequate for expressing repetition,
it is not suitable for encoding more general hybrid
automata, especially when the number of modes is
not small and the jump conditions are non-trivial.
The difficulty mainly lies in that the switching event
is fixed in a switch-expression while an automaton
often requires different jump conditions for different
modes.

Indeed, it has been noted previously that another
kind of recursive signal is needed to solve this prob-
lem, which is different from let signal [5]. We can
achieve this in FRP simply by defining mutually re-
cursive signals that switch into each other, which
gives us enough expressive power to encode any hy-
brid automaton. Unfortunately, this solution is too
general for RT-FRP, since resource bounds cannot be
guaranteed for programs written in this style. To see
why, let’s look at this snippet of code:

let b = b0 ‘until® ev -=> f b
in b

The behavior b is initially b0, and after ev has oc-
curred n times, it becomes £" b0. Hence with each oc-
currence of ev, the amount of computation in one tick
builds up and eventually exceeds any fixed bound.

Our solution is to add two constructs to RT-FRP
for writing mutually switchable signals, and impose
some syntactic constraints such that resource bounds
can still be guaranteed. We call signals in this style
tail signals, because the syntax for such signals is
analogous to that for tail recursion. With tail signals,
any hybrid automaton is easily defined.

The two constructs we add are let continue and until:

s,ev n= - |
let continue {k; z; = s;}in s]|
suntil {ev; = k;}

where k is the syntactic category for continuations,
and is drawn from a special set of identifiers.

let continue defines a group of mutually recursive con-
tinuations. A continuation is simply a name of a sig-
nal parameterized by a variable. If we think of con-
tinuations as control modes, and events in until as
jump conditions, then let continue defines a hybrid
automaton.

The syntactic form of until determines that a con-
tinuation can invoke only one continuation (in other
words, the expression following a “=” can only be
a continuation), and therefore the computation will
not grow unbounded.

Recall the definition for continuation contexts and
continuation environments:

Continuation contexts A = [l|Ak:g

Continuation environments K == []|K, k> (z,s)

Note that in A, the type g we assign to a continua-
tion k is the type of the argument the continuation is
expecting, not the type of the signal the continuation
is producing. The environment C maps a continua-
tion to its definition, including the formal argument
and the signal parameterized by that argument.

The typing rules for these new constructs can be
found in figure 6, and their operational semantics is
given in figure 7.

In addition to tail signals, let continue also gives us
a way to write signals parameterized by a variable.
This allows the same expression to be reused with
different values of the parameter.
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Figure 7: Operational Semantics for let continue and until

4.3 Well-Formed Recursions

Not every well-typed program in RT-FRP is mean-
ingful. For example,

let signal x = ext x in ext x

does not uniquely define a signal. The execution of
this program immediately gets stuck.

Since the goal of RT-FRP is to guarantee resource
bounds, we would like to be able to detect such ill-
founded recursions before execution. We do this by
capturing well-formed recursions in a grammar.

Given an RT-FRP program, we require it to be well-
typed. In addition, for each expression of the form:

let signal x = s1 in s2

we require that s1 € Wy,3, where Wx (X is a set of
variables and continuations) is defined by the gram-
mar (assuming all variables and continuations are dis-
tinct):

Wx == input|time|ext e, where X N FV(e) = 0|
delay v s|let signal £ = Wx in Wx |

Wx switch on z = ev in Wx |

let continue {k; z; = Wx;} in Wx |

let continue {k; z; = s;}in Wxug;y |

Wx until {ev; = k;}, where X N {k;} =0

This constraint ensures that each recursive let signal
in the program is well-formed, and therefore the ex-
ecution will not become stuck.

Given any let signal expression, its well-formedness
can be checked statically. This information is only
used to reject ill-formed recursive definitions, and is
not needed at run-time. Hence the evaluation and
transition rules are not aware of Wx, and there is no
run-time overhead.

5. PROPERTIES OF RT-FRP

The main goals in designing RT-FRP are that it should
run fast, have effective real-time guarantees, and be
sufficiently expressive. We have given some evidence
of its expressiveness (writing programs for recursive
signals, stateful signals, and hybrid automata), and
will give more evidence in section 6. In this section
we concentrate on proving certain real-time proper-
ties of RT-FRP; in particular, that there is no space
or time leak, and that the computation in each exe-
cution step is bounded.

A variable environment £ assigns values to variables,
and a variable context I' assigns types to variables. If
the values given to variables have the right types as
specified by the context, we say that &£ is compatible



with ', and write

r+¢.

Similarly, we write
LARK

to indicate that /C, which maps continuations to their
definitions, is compatible with T" and A, which give
types to variables and continuations.

In the following theorems, we assume that T', A, €
and K are given, I' F £, I'; A F K, and the external
computation is type preserving (i.e. if I' Fy e: g and
EFe—swv, thenT k) v:g.).

The first two theorems formally capture a notion of
type preservation for terms and values:

IfT; A ks

s: g, then for all ¢ and i, & K F s 25 s implies
I Abs s':g.

THEOREM 1. (Term Type-preservation)

ProOF. By induction on the derivation for £; KC
PRANF

IfT; A Fs

s : g, then for all ¢t and i, £ F s ‘t—l> v implies
Fkyv:g.

THEOREM 2. (Value Type-preservation)

PrOOF. By induction on the derivation for £ +
0
sSv. O

The next theorem captures a progress property: if the
external computations always termiates, then RT-
FRP evaluation will never “get stuck”:

THEOREM 3. (Progress) IfID; Aks s:g, s does
not use ill-formed recursions, and all the external ex-
pression evaluations used in the ev-ext rule terminate,

iy
then there are s’ and v such that & K F s < ', v.

Note that many RT-FRP programs will, by design,
not terminate, but the above theorem guarantees that
they will still yield instantaneous values at any given
time.

To address the issue of bounded term size, we for-
mally define the size of a term s, written | s|, to be
the number of constructors, external expressions, and

continuations in the term:

linput] = 1
[time| = 1
lexte| = 2
|delay v s| = 2+]s]|
|let signal z = s1 ins2| = 24 |s1|+]|s2]|

| s1 switch on z = ev in s2 |
= 24 |si|+]ev|+]s2]

| let continue {k; z; = s;}in s|
= 1+2n+3f]s;|+]s]

| s until {ev; = k;}|
= Lntls|+Slen;]

As we will show later, in a given continuation envi-
ronment K, the size of a term s during execution is
bounded. This term-size bound, written | s|i, can
be formally defined as:

linputle = 1
[time]e = 1
|exte|x = 2

Idelay v sl = 24+]s]x

|let signal z = s1insa |k = 24 |s1|c+]s2]c
| s1 switch on z = ev in s2 |
= 2+ max{|sifx,|s2 |} +evlc +]s2]x

| let continue {k; z; = s;}ins|k
= 14+2n+372]s; |+ sk,
where K' = {k; — (z;j,5;)}

| s until {ev; = k;} |k

= T n+Islp+S5ndev; Iy +maxii {1 s; I,
where {k; — (xjysj)}]e{l..m} —K

By induction on the structure of s, it is easy to prove
the following lemma:

LeEMMA 1. For all well-typed term s and continu-
ation environment K, | s| < | s|x.

THEOREM 4. (Monotonic Transition) IfT; A ks

s :g then

1. | s|x is defined;

2. forall tand i, if &; K F s Dl ¢ then s e <
|'slx.

PROOF. Statement 1 is proved by induction on the
structure of s, and statement 2 is proved by induction

on the derivation for £; K F s Lo O



From Lemma 1 and Theorem 4 we have corollary 1,
which shows that | s |« is indeed an upper bound for
| sn |, where s can evolve to s, in K in zero or many
steps:

Given a term
g, a sequence of times
,tn, and a sequence of input ii,i2, - ,in,

COROLLARY 1. (Term Size Bound)
s that satisfies I'; A Fs s :
t1,ta, -

i E K s 2 sy, EKF s 22 5 -
K b sn1 = s, then | s, | < |5k

, and

Define the size of a variable environment £ (written
| £]) to be the number of elements in £.

THEOREM 5. (Variable Environment Size Bound)
Let N =|&|+|s|k. T;AFs s:gand Dis a

t,
derivation for & K F s < s', v, then

1. for any €K' + s L so,v" in D, |E'] +
I'silicr < N;

2. forany &' Fe—v inD, |£]+1<N.

ProOOF. By inspecting the evaluation and transi-
tion rules. [

Define the size of a continuation environment K (writ-
ten | KC|) to be the number of elements in K.

THEOREM 6. (Continuation Environment Size Bound)

Let
N = max{n | let continue {k; z; = s; P ins
is a sub-expression of s.}
M = max{N,|K|}.
IfT'; Ats s: g and D is a derivation for &; K +

t, ,i .
5 S s',v, then for any £&;K' + s; Ly sz in D,
|K'| <M.

PrROOF. By inspecting the evaluation and transi-
tion rules. [

THEOREM 7. (Deterministic Derivation) For any
s, t, and i, there is exactly one derivation that leads

.. t,
to a transition of the form &; K + s Ra s',v.

PrROOF. By inspecting the evaluation and transi-
tion rules. [

Define | A |, the size of a derivation A, to be the num-

ber of times we use a transition or evaluation rule in
A.

THEOREM 8. (Derivation Size Bound) For any

t,
s, t, and 1, the size of the derivation for £; IC F s Ra
s',v is no greater than 2|s|.

ProOOF. By induction on the structure of s. [l

Corollary 1 and Theorem 5, 6 and 8 show that RT-
FRP does not have space leak, given that there is no
space leak in the external computation.

Theorem 7 and 8 ensure RT-FRP can be implemented
efficiently, i.e. there is no time leak given the external
compuation does not have time leak.

6. COMPILING FRPINTO RT-FRP

Despite its small size, RT-FRP is fairly expressive.
In this section we describe how some of FRP’s most
common and useful operators can be compiled into
RT-FRP.

FRP’s family of “lifting” operators are easily com-
piled as follows:
lift0e = exte

liftl e s = let signal z = s in ext (e z)

lift2 e s1 s»
let signal z1 = s1 in
let signal x> = s2 in ext (e z1 z2)

In FRP the snapshot operator allows one to grab the
value of a behavior just when an event occurs, and
to use it in subsequent computations. This operator
is compiled as follows:

ev snapshot s
= |ift2 f ev s, where
fLlov = L
fUu_ v2 = (UI,U2)L

FRP’s never and once operators generate event values
that never occur and occur exactly once, respectively.
They are compiled as:

never = lift0 L

once ev
= letsignal z2 = ev in
let signal 1 = delay L
(ext (if z1 = L then x5 else z1)) in
ext (if z; = L then z, else 1)



Finally, FRP’s until and when operators, used in ex-
amples given in section 2, can be compiled as follows:

s1 until ev then s»
= s switch on x = once ev in s2

when s
lift2 (Az1.Azs. if 71 A 22 then ()1 else L)
(delay false s) s

7. RELATED WORK

Several languages have been proposed around the
synchronous data-flow notion of computation. The
general-purpose functional language Lucid [23] is an
example of this style of language, but more significant
are the languages Signal [9], Lustre [3], and Esterel
[1, 2], which were specifically designed for control of
real-time systems. In Signal, the most fundamental
idea is that of a signal, a time-ordered sequence of
values. This is analogous to the sequence of values
generated in the execution of a RT-FRP program.
The designers of Signal have also developed a clock
calculus with which one can reason about Signal pro-
grams. Lustre is a language similar to Signal, rooted
again in the notion of a sequence, and owing much of
its nature to Lucid.

Esterel is perhaps the most ambitious language in
this class, for which compilers are available that trans-
late Esterel programs into finite state machines or
digital circuits for embedded applications. More im-
portantly in relation to our current work, a large ef-
fort has been made to develop a formal semantics
for Esterel, including a constructive behavioral se-
mantics, a constructive operational semantics, and an
electrical semantics (in the form of digital circuits).
These semantics are shown to correspond in a certain
way, constrained only by a notion of stability.

Various implementation techniques for Fran are dis-
cussed in [7], including the basic ideas behind the
stream-based implementation developed in [12].

CML (Concurrent ML) formalized synchronous oper-
ations as first-class, purely functional, values called
“events” [21]. Our event combinators “.|.” and
“==>" correspond to CML’s choose and wrap func-
tions. There are substantial differences, however, be-
tween the meaning given to “events” in these two ap-
proaches. In CML, events are ultimately used to per-
form an action, such as reading input from or writing
output to a file or another process. In contrast, our
events are used purely for the values they generate.
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